Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.

Identifieur interne : 001D97 ( Main/Exploration ); précédent : 001D96; suivant : 001D98

Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.

Auteurs : Beth Papanek [États-Unis] ; Ranjita Biswas [États-Unis] ; Thomas Rydzak [États-Unis] ; Adam M. Guss [États-Unis]

Source :

RBID : pubmed:26369438

Descripteurs français

English descriptors

Abstract

Clostridium thermocellum has the natural ability to convert cellulose to ethanol, making it a promising candidate for consolidated bioprocessing (CBP) of cellulosic biomass to biofuels. To further improve its CBP capabilities, a mutant strain of C. thermocellum was constructed (strain AG553; C. thermocellum Δhpt ΔhydG Δldh Δpfl Δpta-ack) to increase flux to ethanol by removing side product formation. Strain AG553 showed a two- to threefold increase in ethanol yield relative to the wild type on all substrates tested. On defined medium, strain AG553 exceeded 70% of theoretical ethanol yield on lower loadings of the model crystalline cellulose Avicel, effectively eliminating formate, acetate, and lactate production and reducing H2 production by fivefold. On 5 g/L Avicel, strain AG553 reached an ethanol yield of 63.5% of the theoretical maximum compared with 19.9% by the wild type, and it showed similar yields on pretreated switchgrass and poplar. The elimination of organic acid production suggested that the strain might be capable of growth under higher substrate loadings in the absence of pH control. Final ethanol titer peaked at 73.4mM in mutant AG553 on 20 g/L Avicel, at which point the pH decreased to a level that does not allow growth of C. thermocellum, likely due to CO2 accumulation. In comparison, the maximum titer of wild type C. thermocellum was 14.1mM ethanol on 10 g/L Avicel. With the elimination of the metabolic pathways to all traditional fermentation products other than ethanol, AG553 is the best ethanol-yielding CBP strain to date and will serve as a platform strain for further metabolic engineering for the bioconversion of lignocellulosic biomass.

DOI: 10.1016/j.ymben.2015.09.002
PubMed: 26369438


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.</title>
<author>
<name sortKey="Papanek, Beth" sort="Papanek, Beth" uniqKey="Papanek B" first="Beth" last="Papanek">Beth Papanek</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee - Knoxville, Knoxville, TN 37996, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee - Knoxville, Knoxville, TN 37996</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Biswas, Ranjita" sort="Biswas, Ranjita" uniqKey="Biswas R" first="Ranjita" last="Biswas">Ranjita Biswas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rydzak, Thomas" sort="Rydzak, Thomas" uniqKey="Rydzak T" first="Thomas" last="Rydzak">Thomas Rydzak</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guss, Adam M" sort="Guss, Adam M" uniqKey="Guss A" first="Adam M" last="Guss">Adam M. Guss</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee - Knoxville, Knoxville, TN 37996, United States. Electronic address: gussam@ornl.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee - Knoxville, Knoxville, TN 37996</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26369438</idno>
<idno type="pmid">26369438</idno>
<idno type="doi">10.1016/j.ymben.2015.09.002</idno>
<idno type="wicri:Area/Main/Corpus">001B16</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B16</idno>
<idno type="wicri:Area/Main/Curation">001B16</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B16</idno>
<idno type="wicri:Area/Main/Exploration">001B16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.</title>
<author>
<name sortKey="Papanek, Beth" sort="Papanek, Beth" uniqKey="Papanek B" first="Beth" last="Papanek">Beth Papanek</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee - Knoxville, Knoxville, TN 37996, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee - Knoxville, Knoxville, TN 37996</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Biswas, Ranjita" sort="Biswas, Ranjita" uniqKey="Biswas R" first="Ranjita" last="Biswas">Ranjita Biswas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rydzak, Thomas" sort="Rydzak, Thomas" uniqKey="Rydzak T" first="Thomas" last="Rydzak">Thomas Rydzak</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guss, Adam M" sort="Guss, Adam M" uniqKey="Guss A" first="Adam M" last="Guss">Adam M. Guss</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee - Knoxville, Knoxville, TN 37996, United States. Electronic address: gussam@ornl.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee - Knoxville, Knoxville, TN 37996</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Metabolic engineering</title>
<idno type="eISSN">1096-7184</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Cellulose (metabolism)</term>
<term>Clostridium thermocellum (genetics)</term>
<term>Clostridium thermocellum (metabolism)</term>
<term>Culture Media (MeSH)</term>
<term>Ethanol (metabolism)</term>
<term>Fermentation (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Metabolic Engineering (MeSH)</term>
<term>Metabolic Networks and Pathways (genetics)</term>
<term>Mutation (genetics)</term>
<term>Panicum (metabolism)</term>
<term>Plasmids (MeSH)</term>
<term>Populus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biomasse (MeSH)</term>
<term>Cellulose (métabolisme)</term>
<term>Clostridium thermocellum (génétique)</term>
<term>Clostridium thermocellum (métabolisme)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Fermentation (MeSH)</term>
<term>Génie métabolique (MeSH)</term>
<term>Milieux de culture (MeSH)</term>
<term>Mutation (génétique)</term>
<term>Panicum (métabolisme)</term>
<term>Plasmides (MeSH)</term>
<term>Populus (métabolisme)</term>
<term>Voies et réseaux métaboliques (génétique)</term>
<term>Éthanol (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellulose</term>
<term>Ethanol</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Clostridium thermocellum</term>
<term>Metabolic Networks and Pathways</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Clostridium thermocellum</term>
<term>Mutation</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Clostridium thermocellum</term>
<term>Panicum</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulose</term>
<term>Clostridium thermocellum</term>
<term>Panicum</term>
<term>Populus</term>
<term>Éthanol</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Culture Media</term>
<term>Fermentation</term>
<term>Hydrogen-Ion Concentration</term>
<term>Metabolic Engineering</term>
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Concentration en ions d'hydrogène</term>
<term>Fermentation</term>
<term>Génie métabolique</term>
<term>Milieux de culture</term>
<term>Plasmides</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Clostridium thermocellum has the natural ability to convert cellulose to ethanol, making it a promising candidate for consolidated bioprocessing (CBP) of cellulosic biomass to biofuels. To further improve its CBP capabilities, a mutant strain of C. thermocellum was constructed (strain AG553; C. thermocellum Δhpt ΔhydG Δldh Δpfl Δpta-ack) to increase flux to ethanol by removing side product formation. Strain AG553 showed a two- to threefold increase in ethanol yield relative to the wild type on all substrates tested. On defined medium, strain AG553 exceeded 70% of theoretical ethanol yield on lower loadings of the model crystalline cellulose Avicel, effectively eliminating formate, acetate, and lactate production and reducing H2 production by fivefold. On 5 g/L Avicel, strain AG553 reached an ethanol yield of 63.5% of the theoretical maximum compared with 19.9% by the wild type, and it showed similar yields on pretreated switchgrass and poplar. The elimination of organic acid production suggested that the strain might be capable of growth under higher substrate loadings in the absence of pH control. Final ethanol titer peaked at 73.4mM in mutant AG553 on 20 g/L Avicel, at which point the pH decreased to a level that does not allow growth of C. thermocellum, likely due to CO2 accumulation. In comparison, the maximum titer of wild type C. thermocellum was 14.1mM ethanol on 10 g/L Avicel. With the elimination of the metabolic pathways to all traditional fermentation products other than ethanol, AG553 is the best ethanol-yielding CBP strain to date and will serve as a platform strain for further metabolic engineering for the bioconversion of lignocellulosic biomass.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26369438</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-7184</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<PubDate>
<Year>2015</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Metabolic engineering</Title>
<ISOAbbreviation>Metab Eng</ISOAbbreviation>
</Journal>
<ArticleTitle>Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.</ArticleTitle>
<Pagination>
<MedlinePgn>49-54</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S1096-7176(15)00106-8</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ymben.2015.09.002</ELocationID>
<Abstract>
<AbstractText>Clostridium thermocellum has the natural ability to convert cellulose to ethanol, making it a promising candidate for consolidated bioprocessing (CBP) of cellulosic biomass to biofuels. To further improve its CBP capabilities, a mutant strain of C. thermocellum was constructed (strain AG553; C. thermocellum Δhpt ΔhydG Δldh Δpfl Δpta-ack) to increase flux to ethanol by removing side product formation. Strain AG553 showed a two- to threefold increase in ethanol yield relative to the wild type on all substrates tested. On defined medium, strain AG553 exceeded 70% of theoretical ethanol yield on lower loadings of the model crystalline cellulose Avicel, effectively eliminating formate, acetate, and lactate production and reducing H2 production by fivefold. On 5 g/L Avicel, strain AG553 reached an ethanol yield of 63.5% of the theoretical maximum compared with 19.9% by the wild type, and it showed similar yields on pretreated switchgrass and poplar. The elimination of organic acid production suggested that the strain might be capable of growth under higher substrate loadings in the absence of pH control. Final ethanol titer peaked at 73.4mM in mutant AG553 on 20 g/L Avicel, at which point the pH decreased to a level that does not allow growth of C. thermocellum, likely due to CO2 accumulation. In comparison, the maximum titer of wild type C. thermocellum was 14.1mM ethanol on 10 g/L Avicel. With the elimination of the metabolic pathways to all traditional fermentation products other than ethanol, AG553 is the best ethanol-yielding CBP strain to date and will serve as a platform strain for further metabolic engineering for the bioconversion of lignocellulosic biomass.</AbstractText>
<CopyrightInformation>Copyright © 2015 International Metabolic Engineering Society. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Papanek</LastName>
<ForeName>Beth</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee - Knoxville, Knoxville, TN 37996, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Biswas</LastName>
<ForeName>Ranjita</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rydzak</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guss</LastName>
<ForeName>Adam M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee - Knoxville, Knoxville, TN 37996, United States. Electronic address: gussam@ornl.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Belgium</Country>
<MedlineTA>Metab Eng</MedlineTA>
<NlmUniqueID>9815657</NlmUniqueID>
<ISSNLinking>1096-7176</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3K9958V90M</RegistryNumber>
<NameOfSubstance UI="D000431">Ethanol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048013" MajorTopicYN="N">Clostridium thermocellum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000431" MajorTopicYN="N">Ethanol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="N">Fermentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060847" MajorTopicYN="N">Metabolic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008897" MajorTopicYN="N">Panicum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Biofuels</Keyword>
<Keyword MajorTopicYN="N">Clostridium thermocellum</Keyword>
<Keyword MajorTopicYN="N">Consolidated bioprocessing</Keyword>
<Keyword MajorTopicYN="N">Lignocellulose</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>07</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>08</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26369438</ArticleId>
<ArticleId IdType="pii">S1096-7176(15)00106-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.ymben.2015.09.002</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Papanek, Beth" sort="Papanek, Beth" uniqKey="Papanek B" first="Beth" last="Papanek">Beth Papanek</name>
</region>
<name sortKey="Biswas, Ranjita" sort="Biswas, Ranjita" uniqKey="Biswas R" first="Ranjita" last="Biswas">Ranjita Biswas</name>
<name sortKey="Guss, Adam M" sort="Guss, Adam M" uniqKey="Guss A" first="Adam M" last="Guss">Adam M. Guss</name>
<name sortKey="Rydzak, Thomas" sort="Rydzak, Thomas" uniqKey="Rydzak T" first="Thomas" last="Rydzak">Thomas Rydzak</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26369438
   |texte=   Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26369438" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020